庄茁教授,从事断裂力学、计算力学和飞行器结构强度领域的研究工作40余年,与航空航天工业和石油天然气工业紧密合作。取得的主要成果有:
(1)提出基于连续体的壳体断裂力学统一计算理论和方法
长期以来,板壳断裂分析局限于Kirchhoff薄板理论和Mindlin中厚板理论,两套理论控制不同分段,并不统一,一直是力学领域的难题。他提出了基于连续体壳的断裂力学,统一了薄和中厚壳的计算理论,发展了扩展有限元程序,采用扩充形函数构造了非连续位移场,建立了最大能量释放率的裂纹扩展或止裂准则(Int. J. Fracture, 2011 and Int. J. Numer. Meth. Engng, 2016)。美国麻省理工的KJ Bathe教授在Computers & Structures (2014)评估:"It's possible to apply an extended function to a plate and shell, and it can be applied to all kinds of shell structures";西班牙UPC大学的E Onate教授在Computers and Geotechnics (2018)评论:"The extended finite element method has gained a lot of attention over the last few years, with Zhuang et al. using an extended function to describe discontinuations in the displacement field..."。出版专著《Extended Finite Element Method》,Elsevier, 2014,ISBN: 978-0-12-407717-1, (Google citation: 98)。
(2) 分析设计“天和”核心舱壳体结构
应用壳体断裂统一计算理论,他领导团队分析和设计“天和”核心舱结构,长16.6m ×直径4.2m,结构重量仅为15,680N。优化了加强筋的几何和分布,减少大小舱段连接处的应力集中,应用铣削整体加工技术,比较原神舟飞船点焊蒙皮方案的预计重量17,150N,在相同强度下至少减轻1,470N重量,减重率8.57%。在地面模拟太空环境实验,在幅值200度的交变温度下,疲劳寿命大于22.5年,超过设计寿命至少1.5倍。国家发明专利:ZL 202110657166.0。
(3) 西气东输天然气钢制管道动态断裂的可靠性评估
发展了耦合流体/固体/断裂的非线性有限单元法和有限体积法程序,涵盖弹塑性材料本构、开裂管壁的大变形、运动裂纹边界、气体减压模型,国家软件著作权:2007SRBJ1878。评估了西气东输的4,000km管线的X70和X80钢材的断裂可靠性(Eng. Fract. Mech. 1999(64); Int J. Fract., 2000(101)). 英国帝国理工P Leevers教授在Eng. Fract. Mech., 2012(96)评价:"The cost of small-scale rapid crack experiments is high, and the simulation experimental tools based on crack growth are urgently needed. There are at least two well-developed works in this field, both of which are based on large and complex computational programs. One of them is the rapid crack simulation method developed by Zhuang et al. for coupling shell finite elements with fluid finite volume development".
(4) 提出页岩气高效开采的水力压裂理模型和计算方法
提出了含孔隙页岩的断裂力学理论模型和裂缝扩展计算程序,模拟断裂/流体/岩石耦合作用的水力压裂过程和裂缝分叉计算方法(Computational Mechanics, 2014, 54(2), Google citation: 74),获得了国家软件著作权:2019SR0222260。该工作支撑了中石化重庆涪陵页岩气公司和中石油川渝公司的3000m深部以下的页岩气开采工作。
(5) 提出基于位错机制的微尺度晶体塑性流动应力理论
提出了基于位错机制的晶体塑性流动应力理论,阐释了微米和亚微米尺度(200nm-10μm)的晶体材料在没有应变梯度条件下的强度和变形的尺寸效应(Int. J. of Plasticity, 2009(25), (Google citation: 104)和Int. J. Plasticity, 2014(55), (Google citation: 93)). 该理论填补了微尺度晶体塑性理论的空白。建立了耦合离散位错动力学和有限元的有限变形计算方法。理论模型预测的晶体强度被斯坦福大学WD Nix教授 and HJ Gao教授的实验验证(Acta Materialia, 2015(95))。出版专著《Dislocation Mechanism-Based Crystal Plasticity Theory and Computation》,Elsevier, 2019, ISBN:978-0-12-814591-3。